Tracking community evolution in social networks: A survey

TitleTracking community evolution in social networks: A survey
Publication TypeJournal Article
Year of Publication2019
AuthorsDakiche, N, Tayeb, FBenbouzid-, Slimani, Y, Benatchba, K
JournalInformation Processing & Management
Volume56
Pagination1084 - 1102
ISSN0306-4573
KeywordsCommunity evolution, Dynamic community detection, Dynamic network, Social network
Abstract

This paper presents a survey of previous studies done on the problem of tracking community evolution over time in dynamic social networks. This problem is of crucial importance in the field of social network analysis. The goal of our paper is to classify existing methods dealing with the issue. We propose a classification of various methods for tracking community evolution in dynamic social networks into four main approaches using as a criterion the functioning principle: the first one is based on independent successive static detection and matching; the second is based on dependent successive static detection; the third is based on simultaneous study of all stages of community evolution; finally, the fourth and last one concerns methods working directly on temporal networks. Our paper starts by giving basic concepts about social networks, community structure and strategies for evaluating community detection methods. Then, it describes the different approaches, and exposes the strengths as well as the weaknesses of each.

URLhttp://www.sciencedirect.com/science/article/pii/S0306457317305551
DOI10.1016/j.ipm.2018.03.005